Insulin activation of plasma nonesterified fatty acid uptake in metabolic syndrome.

نویسندگان

  • Maria A Ramos-Roman
  • Smadar A Lapidot
  • Robert D Phair
  • Elizabeth J Parks
چکیده

OBJECTIVE Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. The goal of the present study was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. METHODS AND RESULTS Fatty acid kinetics were measured during a meal tolerance test and insulin sensitivity assessed by intravenous glucose tolerance test in overweight human subjects (n=15; body mass index, 35.8 ± 7.1 kg/m(2)). Non-steady state tracer kinetic models were formulated and tested using ProcessDB software. Suppression of adipose fatty acid release, by itself, could not account for postprandial nonesterified fatty acid concentration changes, but adipose suppression combined with insulin activation of fatty acid uptake was consistent with the measured data. The observed insulin K(m) for nonesterified fatty acid uptake was inversely correlated with both insulin sensitivity of glucose uptake (intravenous glucose tolerance test insulin sensitivity; r=-0.626; P=0.01) and whole body fat oxidation after the meal (r=-0.538; P=0.05). CONCLUSIONS These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Soy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review

Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in developed countries. Inflammation due to obesity and fat accumulation is the most important factor in the progression of metabolic syndrome. In cells which have a receptor for insulin hormone, inflammatory mediators target the insulin signaling pathway and cause insulin resistance. Peroxisome proliferator-activated r...

متن کامل

Metabolic remodelling in diabetic cardiomyopathy

Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fat...

متن کامل

Mitigation of Insulin Resistance by Mangiferin in a Rat Model of Fructose-Induced Metabolic Syndrome Is Associated with Modulation of CD36 Redistribution in the Skeletal Muscle.

Mangiferin is one of the prominent active components responsible for the antidiabetic property of many traditional herbs, but its underlying mechanisms of action remain unclear. CD36 in skeletal muscle is known to contribute to the etiology of insulin resistance by facilitating fatty acid uptake. This study investigated the effect of mangiferin on insulin resistance. The results showed that tre...

متن کامل

Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period.

Despite consistent evidence that abnormalities of fatty acid delivery and storage underlie the metabolic defects of insulin resistance, physiological pathways by which fat is stored in adipose tissue and skeletal muscle are not clear. We used a combination of stable isotope labeling and arteriovenous difference measurements to elucidate pathways of postprandial fat deposition in adipose tissue ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 32 8  شماره 

صفحات  -

تاریخ انتشار 2012